
Topic 11

More On Algorithms

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

OBJECTIVES

§ Be able to give a rough estimate of the

running time (in basic steps) of simple

algorithms

§ Explain the concept of recursion

§ Give recursive algorithms for simple

problems

§ Trace the operation of recursive calls

§ Be able to implement simple recursive

algorithms in Java

OBJECTIVES

§ Be able to implement a binary search of a

sorted array using recursion

Reading:

Savitch Chapter 11 plus extra material

Example Algorithm

§ Consider the common problem of finding

(searching) a target value in a sorted array

and returning some index at which it appears

(or an indication if it does not appear at all)

§ The next slide provides pseudo-code for a

straight-forward solution for the case with an

array of integers

§ The algorithm will return the index at which the

target value first appears or –1 if the target value

does not appear in the array

Pseudo-code

Given an array a of integers and a target

integer value

let len = length(a)

i = 0

while ((i < len) and (a[i] < target))

i = i + 1

endwhile

answer = -1

if (i < len) then

if (a[i] == target) then

answer = i

endif

endif

Time Complexity of Algorithms

§ When designing software and choosing

between several ideas for algorithms it is

often useful to get a rough idea of how long

the algorithm will take to run

§ Formal measures of this are called measures

of time complexity of an algorithm

§ For example with our search algorithm we

can say:

Time Complexity of Algorithms

§ To search in 1000 items it might take about 500

iterations of the loop on average, or at worst 1000

iterations

§ If we knew that it took 1 second to search through

1000 items then we might guess it would take

about 1000 seconds (about 17 minutes) to search

through 1 million items

§ The time taken is roughly proportional to the size

of the array to search

§ And we might be able to say that some other

algorithm for doing the same job was significantly

slower or quicker

Time Complexity of Algorithms

§ Measuring time complexity, estimating it and

inventing quick algorithms is a big area of

computer science research

§ We look at time complexity again later in this topic

§ Note that there are other reasons to choose

between one algorithm and another in specific

circumstances

§ For example, space complexity measures of how

much memory an algorithm needs

Recursion

§ One way of inventing quick algorithms for

some problems is to use a recursive

approach

§ “An object is recursive if it partially consists of

or is defined in terms of itself.” - N. Wirth

§ An algorithm is a step-by-step set of rules to

solve a problem; it must eventually terminate

with a solution

Recursion

§ A recursive algorithm uses itself to solve

one or more subcases

§ That is, in problem-solving using recursion, a

solution is expressed in terms of itself

§ Recursive methods implement recursive

algorithms

§ A recursive method is one whose definition

includes a call to itself

Recursion as a Problem
Solving Tool

§ Solution to task T:

§ Solve task T1, which is identical in nature

to task T, but smaller than T

§ Example task:

§ Search a dictionary for a word

A Recursion Algorithm

If it is a one page dictionary then scan the

page for the word

else

open dictionary near the middle

determine which half contains the word

if word is in first half then

search 1st half of dictionary for word

else

search 2nd half of dictionary for word

end if-else

end if-else

end algorithm

Recursive Definitions

§ A recursive definition contains

§ A base part which contains the terminating

condition to stop the recursion, and

§ A recursive part, where each successive call to

itself must be a "smaller version of itself" so that a

base case is eventually reached

Example 1

§ Definition of an integer constant (eg: 571)

(decimal notation) is:

§ Any decimal digit, or

§ Any decimal digit followed by an integer constant

§ Base: Any decimal digit (0 through 9)

§ Recursive: Any decimal digit followed by an

integer constant

§ Recursive part reduces to the base part with

repeated applications

Example 2

§ The Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, …

§ The first number is 1

§ The second number is 1

§ Each of the other numbers is the sum of

preceding two numbers

Recursive Definition: Example 2

§ fib(1): 1 // base part

§ fib(2): 1

§ fib(n): fib(n - 1) + fib(n - 2)

// recursive part for n > 2

§ Eg:

§ fib(3) = fib(2) + fib(1)

Recursive Methods

§ Methods designed to solve problems by

calling themselves

§ Characteristics of a recursive solution:

§ Calls a method to solve a smaller problem of the

same type

§ Size of problem diminishes in successive calls

§ A base case is solvable directly

§ That is, a recursive method must have a

terminating condition – the recursive definition on

the previous slide demonstrates this

Recursive Fibonacci Method

static int fib(int n)

//pre-condition: n >= 0

{

if (n <= 2) // base case

return 1;

else // recursive step

return fib(n - 1) + fib(n - 2);

} // end fib

// a call to method fib

int x = fib(5);

// x will have the 5th Fibonacci number

Recursive Fibonacci Method

/ fib(2)

/ fib(3) +

fib(4) + \ fib(1)

/ \ fib(2)

fib(5) +

\ / fib(2)

fib(3) +

\ fib(1)

§ Invocations of method fib during calculation of

the 5th Fibonacci number

Another Example

§ A recursive function for summing array

elements

§ Task: Sum the first n elements of array A

§ sum (A, n) is:

§ A[0], if n = 1 // base case

§ A[n-1] + sum (A, n-1), if n > 1 // recursive step

Recursive Sum Method

static int sum(int[] A, int n)

//pre-condition: A.length >= n

{

if (n == 1)

return A[0]; //base case

return A[n-1] + sum(A, n-1);

}

Recursive Sum Method

RecursiveSumArray.java

// RecursiveSumArray.java

// Sums the elements of an array recursively

// Written by P S Dhillon

public class RecursiveSumArray {

public static void main(String[] args) {

int[] anArray =

{98,76,65,105,45,1,199,15,88,100};

// determine sum of elements of the array

int arraySum;

arraySum = Sum(anArray, anArray.length);

RecursiveSumArray.java

System.out.println("The numbers are:");

for(int i = 0; i < anArray.length; i++)

System.out.println(anArray[i]);

System.out.println("The sum of array

values is: " + arraySum);

System.out.println("End of program.");

} // end main

RecursiveSumArray.java

static int Sum(int[] A, int n)

//pre-condition: A.length >= n

{

if (n == 1)

return A[0]; //base case

return A[n-1] + Sum(A, n-1);

} // end Sum

}//end of class RecursiveSumArray

Designing A Recursive Solution

§ A common strategy is:

§ Given a problem of size n, split the problem

into two sub-problems

§ A problem of size 1 which is directly solvable

//the base case

§ A problem of size n - 1 that involves recursion

Designing A Recursive Solution

§ Example:

§ A method to multiply two integer numbers m

and n

§ Assume we know our addition table but not the

multiplication table!

// m * n by repeated addition

Multiply(m, n):

m, if n = 1 // base case

// recursive step

m + Multiply(m, n-1), if n > 1

Designing A Recursive Solution

// Recursive multiply method

// Performs multiplication using the + operator

static int Multiply(int m, int n)

// PRE: Assigned(m) && Assigned (n) && n > 0

// POST: returns m * n

{

if (n == 1)

return m; // base case

else // recursive step

return m + Multiply (m, n - 1);

}

Designing A Recursive Solution

Example of a call to the previous method:

Scanner input = new Scanner(System.in);

System.out.print("Enter an integer: ");

int x = input.nextInt();

System.out.print("Another integer: ");

int y = input.nextInt();

System.out.println("\nThe product of " +

x+" and "+y+" is: " + Multiply(x, y));

// Alternatively,

int result = Multiply(x,y);

Exercise for Topic 11

§ Give a recursive Java method for writing out

any given String in reverse order

Recursion: Pros and Cons

§ A powerful problem solving tool - elegant and

concise

§ Not necessarily more efficient than non-

recursive (looping = iterative) solution

§ Recursive routines can be slower and require

more memory space due to overheads

associated with function calls

§ Can be difficult to debug and may result in

infinite recursion

Recursion: Pros and Cons

§ Infinite recursion is worse than infinite loop

§ It makes the computer “hang up” by using up all

available memory (stack overflow)

§ Note that there are general techniques for

getting rid of recursion from an algorithm and

making an iterative version (but the idea

might have been recursive originally and it

might be easier to understand the recursive

version)

To Recurse or Not To Recurse?
That is the Question

§ Choose recursion when

§ The problem is stated recursively and the

recursive solution appears less complex

§ That is, when it makes the code easier to

understand and when efficiency is not important

§ Choose a non-recursive algorithm when

§ Both versions appear equally complex

§ Methods re-written without recursion typically

have loops, so they are called iterative

methods

To Recurse or Not To Recurse?
That is the Question

§ Iterative methods generally run faster and use

less memory space than recursive methods

§ If the use of a table is an option

§ Use table lookup (see next slide)

Table Lookup

§ Replaces a sequence of instructions with a

simple array lookup

§ Out-performs both recursive and iterative

algorithms

public static int Tfib(int n)

// PRE: (n >= 0) && (n < 8)

// POST: value returned is nth Fibonacci number

{

int[] fibTable = {1,1,2,3,5,8,13,21};

return fibTable[n];

}

Binary Search

§ Recall the common problem of finding a

target value in a sorted array and returning

some index at which it appears (or an

indication if it does not appear at all)

§ Here is another (recursive) idea for a solution:

§ Start in the middle and (if the target value is not

there) search either the first half or the second

half depending on where the target would be

Binary Search
§ Here is pseudocode:

§ given array a of integers and target integer value

§ output binsearch(a, 0, length(a)-1, target)

§

§ binsearch(int array a, int first, int last, int target)

§ if (first>last) return –1

§ mid= (first+last)/2 (integer division)

§ if (a[mid]==target) return mid

§ if (a[mid]>target)

§ return binsearch(a, first, mid-1, target)

§ else

§ return binsearch(a, mid+1, last, target)

§

§ The idea of binsearch is to find an index in the range first to last

inclusive such that the target value appears there in the array. Here

is one possible Java implementation ...

Binary Search
§ Here is pseudocode:

Given array a of integers and target value

output binsearch(a, 0, length(a)-1, target)

binsearch(int array a, int first, int last,

int

target)

if (first>last) return –1

mid = (first+last)/2 // integer division

if (a[mid] == target) return mid

Binary Search

if (a[mid] > target)

return binsearch(a,first,mid-

1,target)

else

return

binsearch(a,mid+1,last,target)

Binary Search

§ The idea of binsearch is to find an index in

the range first to last inclusive such that

the target value appears there in the array

§ Here is one possible Java implementation ...

Binary Search Class

/**

Class for searching an already sorted array of

integers.

To search the sorted and completely filled array

b, use the following:

ArraySearcher bSearcher = new ArraySearcher(b);

int index = bSearcher.find(target);

where index will be given an index of where

target is located

otherwise index will be set to -1 if target is

not in the array

*/

Binary Search Class

public class ArraySearcher {

private int[] a;

// constructor

public ArraySearcher(int[] theArray)

/** Precondition: theArray is full and is sorted

from lowest to highest */

{

a = theArray;

// a is now another name for theArray

} // end constructor ArraySearch

Binary Search Class

/** If target is in the array, returns the index of

an occurrence of target.

Returns -1 if target is not in array*/

public int find(int target)

{

int len = a.length – 1;

return binarySearch(target,0,len);

}

Binary Search Class
/** Uses binary search to search for target in

a[first] through a[last] inclusive

Returns the index of target if target is found.

Returns -1 if target is not found. */

private int binarySearch(int target, int

first, int last)

{

int result = -1;

int mid;

if (first > last)

result = -1;

else {

Binary Search Class
mid = (first + last) / 2;

if (target == a[mid])

result = mid;

else if (target < a[mid])

result = binarySearch(target,first,

mid-1);

else // (target > a[mid])

result = binarySearch(target,mid+1,

last);

}

return result;

} // end binarySearch

} // end class ArraySearcher

Binary Search Demo

import java.util.*;

public class ArraySearcherDemo {

public static void main(String[] args) {

int [] a = new int[10];

System.out.println("Enter 10 integers in

increasing order.");

System.out.println("One per line.");

Scanner keyboard=new Scanner(System.in);

for (int i = 0; i < 10; i++)

a[i] = keyboard.nextInt();

System.out.println();

Binary Search Demo
System.out.print("a["+i+"]="+a[i]+" ");

System.out.println();

System.out.println();

ArraySearcher finder = new

ArraySearcher(a);

String ans;

do {

System.out.println("Enter a value to

search for:");

int target = keyboard.nextInt();

int result = finder.find(target);

Binary Search Demo
if (result < 0)

System.out.println(target + " is

not in the array.");

else

System.out.println(target + " is at

index " + result);

System.out.println("Again?(yes/no)");

ans = keyboard.next();

}while (ans.equalsIgnoreCase("yes");

System.out.println("May you find what

you're searching for.\n");

} // end main

} // end class ArraySearcherDemo

How Long Does It Take?

§ It is a bit harder to analyze the time

complexity of binary search (than the simple

iterative version given earlier in the topic)

§ Eg: to search through 1000 items we (in a

couple of operations) break the problem down

into a search through 500 items, then 250

items, then 125 items, then 63, then 32, then

16, then 8, then 4, then 2, then we must have

found our target (or returned –1)

§ There are about 10 such steps

How Long Does It Take?

§ In general to search through N items, we take

log2(N)

§ Recall 1000 is about 2 to the tenth

§ To search though 1 million items only takes

twice as long!!

§ The individual steps may take a little longer

(i.e. consist of several basic operations) but,

for large N, this is outweighed

How Long Does It Take?

§ Eg: made up figures ...

§ So binary search is a much better searching

algorithm

search times simple linear binary

1 item .001 sec .01 sec

10 items .01 sec .03 sec

1000 items 1 sec 0.1 sec

1 million items 17 minutes 0.2 sec

Algorithm Efficiency

§ We have seen that choosing the right

algorithm for the job can sometimes make

enormous differences to the efficiency of

programs

§ Many important problems and possible

algorithmic solutions have been studied for

complexity and other efficiency issues

§ This is a big area of computer science

research. This is important for several

different types of situations

Algorithm Efficiency

§ Eg: getting a really big job done faster

§ Allocate school students to university places in

less than one hour instead of several days, or

§ Timetabling, or

§ Many scientific and engineering applications, or

§ Internet searches, or

§ Searching and sorting in large databases, etc.

Algorithm Efficiency

§ Eg: getting a reasonably large job done very

fast

§ Graphics in virtual reality, or

§ Games, or

§ Finding words in files or emails on a PC, etc.

More On Efficiency

§ Note that you will sometimes see the big-oh

notation to express the order of magnitude

measure on how long an algorithm takes to

solve a problem

§ Eg: saying that our simple linear search

algorithm is O(N) means that its running time

is proportional to N where N is the size of the

data

More On Efficiency

§ You will see O(log2(N)) for binary search and

O(N2) for some sorting algorithms, etc.

§ These give the implementer a rough idea of

which algorithms are best for the problem

§ You may also see reports that certain

problems are O(N) or O(N2) or O(N3) or

O(log2N), etc.

More On Efficiency

§ This means that it has been mathematically

proved that this is the best time complexity

possible for any algorithm to solve that

problem

§ It is impossible to find a better algorithm

§ Eg: to sort N items takes O(N log N) steps on

average

§ No algorithm (even one not yet invented) can

do better than that on average

More On Efficiency

§ Insertion sort takes O(N2) steps on average,

quicksort takes O(N log N) steps on average.

Quicksort is best possible (in a certain

sense)...

sorting insertion quicksort

1 item .001 sec .010 sec

1000 items 17 minutes 100 sec

1 million items 32 years 2 days

Grouping Algorithms by Efficiency

§ Most algorithms execute in polynomial time,

expressed as O(Na), constant a > 0

§ Eg: O(N) is linear time

§ O(N2) is quadratic time

§ O(N3) is cubic time

§ Algorithms whose running time is

independent of problem size are known as

constant time algorithms

§ Big-O notation: O(1)

Grouping Algorithms by Efficiency

§ Algorithms requiring time proportional to aN

(where a is a constant) are known as

exponential algorithms

§ Execution times for exponential algorithms

increase extremely fast with problem size

§ Exponential algorithms are not suitable for

any values of N except very small

Growth Rates for
Selected Algorithms

§ Average running times of some searching and

sorting algorithms

Algorithm Efficiency -average case

Sequential search O(N)

Binary search O(log2N)

Bubble sort O(N2)

Selection sort O(N2)

Quick sort O(N log2N)

Calculating Running Time in
Big-O Notation

§ An algorithm without loops or recursion

requires O(1) time

§ An algorithm with N iterations requires O(N)

time

§ Eg:

for i = 1 to N

statements without any more looping

endfor

Calculating Running Time in
Big-O Notation

§ An algorithm with one loop nested inside

another has quadratic efficiency O(N 2)

§ Eg:

for i = 1 to N

for j = 1 to N

statements without more looping

endfor

endfor

END OF TOPIC 11

